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Abstract. In this paper we show that financial markets have their own intrinsic underlying
geometrical structure: fibre bundle geometry. This structure allows one to formulate a local gauge
symmetry of rescaling of asset units in geometrical terms. We take this into account during the
course of model construction, thus providing financial economics with physical methodology.

1. Introduction

The development of mathematical tools of economics is entangled with developments of
economics itself. Demand–supply curves, evolutionary differential equations, models of
general equilibrium, game theory and stochastic calculus are just a few examples of advances
in the mathematical machinery of economics over the years. This paper aims to add a new
‘building block’ to the mathematical construction of contemporary economics: namely, we
show how abstract objects of differential geometry arise naturally in the context of exchange
economy.

It is not the first time that notions of (stochastic) differential geometry have appeared in
finance. Modelling of the dynamics of market prices as a random work on multi-dimensional
state space prompts the analogy (see Hughston 1994). As soon as a state space is considered
as a smooth manifold the use of Riemann metrics and connections is natural. This allows
us to rewrite known pricing equations in terms of geometrical covariant quantities. What
we suggest in this paper is, however, quite different. We argue that the general exchange
economy, and financial markets in particular, where wealth is transformed from one form to
another according to exchange rules, are natural realizations of formal definitions of a fibre
bundle space equipped with a connection, or rule of ‘parallel transport’.

The paper is organized as follows. In the next section we informally introduce the fibre
bundle spaces and show using simple examples how they appear in a financial setting. In
section 3, the formal definitions of fibre bundles and related relevant objects are given. These
definitions are used later in section 4 to describe a formal construction of the fibre bundle space
for financial markets. Using the results of this section it is possible to formulate a market
dynamics as an evolution of a dynamical system in the fibre bundle. Section 5 is devoted to
the notion of a special symmetry, namely gauge symmetry, and discusses a possibility for the
dynamics to be gauge invariant. The symmetry allows us to reduce a number of legitimate
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market models and considerably simplifies their study. The last section contains concluding
remarks.

2. Simple examples

We start with very basic examples which will, however, elucidate the formal constructions
of the following sections. At the moment, formal definitions are not necessary. The purpose
of this section is to give a vague idea as to what the fibre bundle space is. It is possible to
imagine the fibre bundle space as a set of spaces (fibres) which are parametrized by points of
a set called the base. In brief, a naive picture of the fibre bundle gives the fibre bundleE as a
union∪x∈BFx of fibresFx which correspond to pointsx of the baseB. In what follows, one
can consider the fibre bundleE as a direct product ofB×F . This means that the points of the
fibre bundle can be presented as(x, f ), where the first number is the coordinate in the base
and the second one is the coordinate in the corresponding fibre.

Imagine that we are watching a particle moving in such a fibre bundle. The particle can
move inside the fibre as well as between fibres. Putting aside the issue of coordinates on the
base we can pose the question: ‘What if coordinates in different fibres are not adjusted to each
other?’ In this case, the changing of coordinates does not say anything about the real change
of particle position which is characterized by the change of ‘real’ coordinates—exactly like
the rate of return, this does not say anything until inflation is accounted for and the real rate
of return is calculated by Fisher’s formula. As in the example with inflation, we must subtract
from the total change of the coordinate its superficial change which is associated with zero
real change and which is determined by coordinate disagreement in different fibres. It is this
superficial change that determines the rule for coordinate comparison in coordinate systems
of different fibres or, as mathematicians put it, parallel transport.

Now let us turn to finance for examples. We assume that there are two currencies (two
points on the base) and we wish to compare $4 and £3 (numbers 3 and 4 in coordinate systems
of fibres corresponding to points ‘dollar’ and ‘pound’ on the base). At a first glance, four
notes seem more attractive than three. However, everyone would prefer to have £3 because at
an exchange rate of $1.67 per £1 can get $5 for these £3, which is much better than to have
only four. We can see that when assets are transformed from $4 into £3 the real change was
equal to +1 dollar instead of initial−1. In our case, the real value of $4 was £2.40, and the
fictitious change was equal to £1.60. When compared, £2.40 differs from £3 by 60p, which is
equivalent to exactly $1. For a mathematician, all this would mean is that £2.40 is equal to $4
under parallel transport from one point on the base to another, and a covariant (real) difference
of £3 and $4 is equal to 60p.

Net present value gives us another financial example of parallel transport. Assume that we
can choose between £100 now, or £103 a year later. At first glance 103 (the same currency!)
notes seem more attractive than 100. However, a reader is likely to choose 100 because at
an interest rate of 5%, £100 will become £105 in a year, which is definitely better than 103.
Instead of counting all pounds a year later we can count them now. Then, we will be able
to compare £100 with the discounted value of £103: that is, the net present value equal to
98.10 = 103/(1 + 0.05). Again, one can see that as the assets move in time from pounds
at present to pounds a year later, the real change is £2 instead of the initial +3, the parallel
translation of £100 amounting to £105 and the covariant (real) difference being 2.

After we have defined parallel transport, we can address the issue of the difference in the
results of parallel transport carried out by different routes on the base which have a common
beginning and end. The financial meaning of the difference is quite transparent: this is the
excess rate of return on the arbitrage operation (with the condition of prior knowledge of
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prices) which consists of opening a short and a long position at the initial point and closing the
positions at the end point of the path. The difference between the initial value of the transported
amount and its value after parallel transport along the closed path mathematically determines
the curvature tensor of the fibre bundles. Therefore, the notion of the curvature tensor is a
natural and convenient quantity to present a mispricing in this new language.

To sum up, we can say that when financiers buy and sell securities, exchange currency or
calculate net present values, they make parallel transports in fibre bundles. What is more, they
have been doing this for hundreds of years without being aware of it.

3. Fibre bundles: formal definitions

This section aims to introduce fibre bundles to the reader since these structures are not yet
common in economic literature. We give formal definitions of fibre bundles and related objects
which are relevant for our purposes. That is why, despite the fact that the section looks a bit
‘dry’ because of the amount of definitions, it will be helpful at least to look through it, if not
to read it carefully.

The fibre bundle is a very popular mathematical structure and there exists a vast literature
on the subject. Further details can be found, for example, in Husemoller (1975), Dubrovin
et al (1984) and references therein.

Definition 1 (Dubrovin et al 1984). A smooth fibre bundle is a composite object, made up of:

(1) a smooth manifoldE called the total (bundle) space;
(2) a smooth manifoldB called the base space;
(3) a smooth surjective mapp : E → B called the projection whose Jacobian is required to

have maximal rankn = dimB at every point;
(4) a smooth manifoldF called the fibre;
(5) a Lie groupG of smooth transformations (self-diffeomorphisms) of the fibreF (it implies

that the actionG×F → F is smooth onG×F ): this group is called the structure group
of the fibre bundle;

(6) a ‘fibre bundle structure’ linking the above entities, defined as follows. The baseB comes
with a particular system of local coordinate neighbourhoodsUα (called the coordinate
neighbourhoods or charts), above each of which the coordinates of the direct product are
introduced via a diffeomorphismφα : F × Uα → p−1(Uα) satisfyingpφ(y, x) = x; the
transformationsλαβ = φ−1

β φα : F ×Uαβ → F ×Uαβ , whereUαβ = Uα ∩Uβ are called
the transition functions of the fibre bundle. Every transformationλαβ has the form

λαβ(y, x) = (T αβy, x)
where for allα, β, x the transformationT αβ(x) is an element of the structural groupG.

To complete the definition with an intuitive picture one can imagine a fibre bundle as a
union of fibresFb = p−1(b), for any elementb ∈ B. This union is parametrized by the
baseB and ‘glued together’ by the topology of the spaceE using the transition functions
λαβ . The total spaceE can be represented asE = ∪αF × Uα. For each of the chartsUα the
coordinate system in the fibreF can be chosen independently. This generates two independent
coordinate systems inF for each overlapped neighbourhood:Uαβ = Uα ∩ Uβ . To identify
equivalent points (to ‘glue them together’) in different coordinate systems one uses elements
of the structural groupG stating that

T αβy|Uα = y|Uβ y ∈ F.
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From the definition of functionsT αβ it follows that:

T αβ(x) = (T βα(x))−1 and T αβ(x)T βγ (x)T γα(x) = 1

where the second equation is understood as holding on the region of intersectionUα∩Uβ∩Uγ .

Definition 2. A fibre bundleξ is trivial with the fibreF if ξ is isomorphic with the fibre bundle
(B × F, p,B). In what follows, all financial examples we study will be globally trivial.

Definition 3. A principal fibre bundle is defined to be a fibre bundle whose fibreF coincides
with the structural group, which acts on the fibreF = G by right translationsRg : G→ G,
Rg(x) = xg.

Now we introduce a connection which allows one to use a differential calculus on a fibre
bundle. A fibre bundle with connection can be imagined as a family{Fb} of fibres (whose
union∪bFb is the total spaceE) which is also provided with a rule of ‘parallel transport’.
Given any pathγ (t), a 6 t 6 b, in the baseB the connection defines a rule for ‘parallel
transporting’ the fibreF along the pathγ (t) from one end to the other, i.e. a map

φγ : Fγ(a)→ Fγ(b)

satisfying the following natural requirements:

(1) φ(γ ) depends continuously on the pathγ (t);
(2) φ(γ ) is independent on the parametrization of the path;
(3) φ(γ ) is the identity map ifγ (t) = const;
(4) the following equations take place:

φ(γ1γ2) = φ(γ1)φ(γ2) φ(γ−1) = (φ(γ ))−1.

The connection is theG-connection if the mapφγ is defined as

φγFγ (a) = g(γ )Fγ (b) g(γ ) ∈ G∀γ.
The properties of the mapφγ imply the same properties for the functiong(γ ).

Definition 4. The gauge transformation with a functiong(x) ∈ G is defined as follows:

Fx → g(x)Fx ∀x ∈ B.
The gauge transformation can be thought of as a point-dependent change of the coordinate

system in the fibre for each point of the base. Under gauge transformation, theG-connection
g(γ ) is transformed in a very simple way:

g(γ )→ g(γ (b))g(γ )g−1(γ (a))

for any pathγ (t), a 6 t 6 b.
Using g(γ ) it is possible to introduce the parallel transport of an element of the fibre

along the pathγ : one calls the expressiong(γ )ψ ∈ Fγ(b) the result of the parallel transport of
ψ ∈ Fγ(a).
Definition 5. The cross section of the fibre bundle is a mapψ : B → E, such thatpψ = 1B :
i.e.,ψ(x) ∈ Fx for eachx.

The next step is to introduce the covariant difference of values of a cross sectionψ(x) as

1γψ = ψ(γ (b))− g(γ )ψ(γ (a)).
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If γ is an infinitesimal path connecting pointsx andx + dx in the base then the covariant
difference transforms to the covariant derivative Dψ :

Dψ(x) ≡
dimB∑
µ=1

Dµψ(x)dx
µ =

dimB∑
µ=1

(
∂ψ(x)

∂xµ
− Aµ(x)ψ(x)

)
dxµ

whereg(γ ) = 1+
∑dimB

µ=1 Aµ(x)dxµ andAµ(x) are elements of the Lie algebra of the structural
groupG.

As is clear from the definition, the result of the parallel transport depends not only on
end pointsγ (a) andγ (b) but on the whole pathγ . This means that the results of the parallel
transports with the same end points but different paths, can be different. Thecurvatureis a
measure of this difference. To define it one considers two pathsγ1 andγ2 with the same end
points and combines them in a composite cyclic pathγ−1

2 γ1 which consists of pathγ1 going
from γ (a) to γ (b) and the return pathγ−1

2 from pointγ (b) to the original pointγ (a). If the
paths are infinitesimal theng(γ−1

2 γ1) can be expanded as

g(γ−1
2 γ1) = 1−

dimB∑
µ,ν=1

1
2Fµ,νσ

µν

whereσ is a bivector corresponding to the surface encircled by the pathγ−1
2 γ1 andF is the

curvature tensor.

4. Financial market as a fibre bundle

In this section we show that a financial market represents a structure of the abstractions
introduced in the previous section. More precisely, we give a description of the relevant fibre
bundles, construct the parallel transport rules using for this elements of the structural group,
and give an interpretation of the parallel transport operators. The corresponding curvature is
also defined and it is shown to be equal to the rate of excess return on the elementary plaquette
arbitrage operation. This opens the way for a construction of the dynamics of parallel transport
factors which provides the lattice gauge theory formulation.

Theorem 1. If X is a finite set of assets evolving in time such that there exists at least one
asset inX which can be exchanged with any other asset inX at any time, thenX possesses
a structure of a trivial fibre bundle with a connected base. The connectivity is defined by the
rule of the asset’s exchange.

Proof. To prove the theorem we construct the fibre bundle for an arbitrary setX.
First, we construct a base of the fibre bundle which is the main nontrivial step. Let us

order the complete set of assetsX and label them by numbers from 0 toN . This set can
be represented byN (asset) points on a two-dimensional plane (the dimension is a matter of
convenience and can be chosen arbitrarily). To introduce time into the construction we attach
a copy of theZ-lattice (i.e. a set of all integer numbers{. . . ,−1, 0, 1, 2, . . .}) to each asset
point. We use discretized time since there is a natural time step and all real trades happen
discretely. Taken together this gives the base setL = {1, 2, ..., N} × Z.

The next step in the construction is to define theconnectivityof the base which is the key
element to define a curve inL. To do this, we start with an introduction of a matrix of links
0 : L × L → {0,±1} which is defined by the following rule: for anyx ≡ (i, n) ∈ L and
y ≡ (k,m) ∈ L: 0(x, y) = 0, except for
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(1) i = k andn = m − 1, accepting that theith security exists at thenth moment and this
moment is not an expiry (termination) date for the security;

(2) n = m and at thenth moment of time theith asset can be exchanged on some quantity of
thekth asset and at some rate.

In latter situations:0(x, y) = 1= −0(y, x).
Using the matrix0(. , .) we define acurveγ (x, y) in L which links two pointsx, y ∈ L.

We call the setγ (x, y) ≡ {xj }pj=1 a curve inL0 with ends at pointsx, y ∈ L andp − 1
segments ifx = x1, xp = y, ∀xj ∈ L and

0(xj , xj+1) = ±1 for ∀j = 1, . . . , p − 1.

This baseL is connected since there is at least one asset which can be exchanged with any
other asset and thus can serve as a link in the curve connecting any two assets. This completes
the construction of the base of the fibre bundle.

The next step is to define the corresponding structure group. The structural groupG to be
used is a group of dilatations: i.e., the group of multiplications by positive real numbers. The
corresponding irreducible representation is the following: the groupG is a group of mapsg
of R+ ≡]0,+∞) toR+, which act as a multiplication of anyx ∈ R+ on some positive constant
λ(g) ∈ R+:

g(x) = λ(g) · x.
Transition functions of a fibre bundle with the structure group correspond below to various
swap rates, exchange rates and discount factors for assets.

The last step in the construction is the definition of fibres. In this paper we use fibre
bundles with the following fibresF :

(1) F = G: i.e., the fibre coincides with the structure group. The corresponding fibre bundle is
called the principal fibre bundleEP . The dynamical theory on the fibre bundle corresponds
to a dynamics of prices and rates.

(2) F = R+: this fibre bundle will be important to describe cash–debt flows. Indeed, a
cross sections (a rule which assigns a preferred points(x) on each fibre to each point
x = (i,m) ∈ L of the base) of the fibre bundle gives the number of units of theith asset
at the moment of timem.

The fibre bundleE is defined now as a trivial one, i.e.E = L × F . We do not concern
ourselves with the definition of the projections. This completes the construction and the
proof. �

Any theory of the financial market can now be formulated in terms of these cross sections
of fibre bundles. A theory can, therefore, be constructed in such a way that all geometrical
properties of the objects (such as covariance under gauge transformations, which corresponds
to a change of money units) will be honoured.

It is straightforward to define connectivity, links matrices and bases for fibre bundles
for the simple stock exchange withN tradable securities, the foreign-exchange market and
financial derivatives.

Theorem 2. Prices and rates of return define a natural connection in the fibre bundleE.

Proof. As was defined in the previous section, theG-connection is a rule of the parallel
transport of an element of a fibre from one point (x) of a base to another point (y). This means
that an operator of the parallel transport along the curveγ , U(γ ) : Fx → Fy is an element
of the structural group of the fibre bundle. Since we do not deal with the continuous case
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and restrict ourselves to lattice formulation, we do not need to introduce a vector field of the
connection but rather must use elements of the structural groupG itself. By definition, an
operator of the parallel transport along a curveγ , U(γ ), defined as a product of operators of
the parallel transport along the links which constitute the curveγ :

U(γ ) =
p−1∏
i=1

U(xi, xi+1) γ ≡ {xi}pi=1 x1 = x xp = y.

This means that we need to define only the parallel transport operators along elementary links.
SinceU(γ ) = U−1(γ−1), this restricts us to a definition only of those along elementary links
with positive connectivity. Summing up, the rules of parallel transport in the fibre bundles are
completely defined by a set of parallel transport operators along elementary links with positive
connectivity. The definition of the set is equivalent to a definition of parallel transport in the
fibre bundle.

In the proof of theorem 1, connectivity was defined as the possibility of asset movements
in ‘space’ and time: it allows us to give the following interpretation of the parallel transport.
We have defined two principal kinds of links with positive connectivity. The first one connects
two points(i, n) and(i, n + 1) and represents a deposition of theith asset for one unit of time.
This deposition then results in a multiplication of the number of asset units by an interest factor
(or internal rate of return factor) calculated as

U((i, n), (i, n + 1)) = eri1 ∈ G
where1 is a time unit andri is an appropriate rate of return for theith asset. In the continuous
limit ri becomes a time component of the corresponding connection vector field at the point
(i,1n).

In the same way, the parallel transport operator is defined for the second kind of elementary
links, i.e. links between(i, n) and(k, n+1) if there is a possibility to change at thenth moment
a unit of theith asset onSi,kn units of thekth asset:

U((i, n), (k, n + 1)) = Si,kn ∈ G.
HereSi,kn is the price of theith asset in terms of thekth asset. In general, an operator of the
parallel transport along a curve is a multiplier by which a number of asset units is multiplied
as a result of an operation represented by the curve. �

Results of parallel transports along two different curves with the same boundary points
are not equal for a generic set of the parallel transport operators. A measure of the difference
is the curvature tensorF . Its elements are equal to the resulting change in the multiplier due to
a parallel transport along a loop around an infinitesimal elementary plaquette with all nonzero
links in the baseL:

Fplaquette→0 =
∏
m

Um − 1.

The indexm runs over all plaquette links,{Um} are corresponding parallel transport operators
and an agreement about an orientation is implied.

Theorem 3. The elements of the curvature tensor are excess returns on the operation
corresponding to a plaquette.

Proof. Since elements of the curvature tensor are local quantities, it is sufficient to consider an
elementary plaquette on a ‘space’–time base graph. Let us, for example, consider two different
assets (for the moment we will call them share and cash) which can be exchanged with each
other by some exchange rateSi (one share is exchanged toSi units of cash) at some moment



L12 Letter to the Editor

Ti , and the reverse rate (cash to share) isS−1
i . We suppose that there exists a characteristic

time step1 and this is taken as a time unit. So the exchange ratesSi are quoted on a set of the
equidistant times:{Ti}Ni=1, Ti+1− Ti = 1. The interest rate for cash isr1, so that between two
subsequent timesTi andTi+1 the volume of cash is increased by a factor er11. The shares are
characterized by a rater2.

Let us consider an elementary (arbitrage) operation between two subsequent timesTi and
Ti+1. There are two possibilities for an investor, who possesses a cash unit at momentTi , to
obtain shares by momentTi+1. The first one is to deposit cash into a bank with interest rater1
at momentTi , withdraw money back at momentTi+1 and buy shares for priceSi+1 each. In this
way the investor gets er11S−1

i+1 shares at momentTi+1 for each unit of cash he had at moment
Ti . The second way is to buy the shares for priceSi each at momentTi . Then, at momentTi+1,
the investor will haveS−1

i er21 shares for each unit of cash at momentTi . If these two numbers
(er11S−1

i+1 andS−1
i er21) are not equal then there is a possibility for arbitrage. Indeed, suppose

that er11S−1
i+1 < S−1

i er21, then at momentTi an arbitrager can borrow one unit of cash, buyS−1
i

shares and getS−1
i er21Si+1 units of cash from selling shares at momentTi+1. The value of this

cash discounted to momentTi isS−1
i er21Si+1e−r11 > 1. This means thatS−1

i er21Si+1e−r11−1
is an arbitrage excess return on the operation. On the other hand, as we have shown above,
this represents lattice regularization of an element of the curvature tensor along the plaquette.
Similarly, one can consider the case er11S−1

i+1 > S−1
i er21 and ‘space’–‘space’ plaquettes.�

Let us consider the following quantity:

(S−1
i er21Si+1e

−r11 + Sie
r11S−1

i+1e
−r21 − 2)/21. (1)

This is the sum of excess returns on the plaquette arbitrage operations. In the continuous limit
this quantity converges, as usual, to a square of the curvature tensor element. The absence of
arbitrage is equivalent to the equality

S−1
i er21Si+1e

−r11 = Sier11S−1
i+1e
−r21 = 1

and we can use quantity (1) to measure the arbitrage (excess rate of return). In a more formal
way, expression (1) may be written as

R = (U1U2U
−1
3 U−1

4 +U3U4U
−1
2 U−1

1 − 2)/21.

In this form it can be generalized for other plaquettes such as, for example, the ‘space’–‘space’
plaquettes.

The last point to add in this section is the notion of gauge transformation. Gauge
transformation means a local change of a scale in the fibres:

fx → g(x)fx ≡ f ′x fx ∈ Fx g(x) ∈ G x ∈ E
together with the following transformation of the parallel transport operators:

U(y, x)→ g(y)U(y, x)g−1(x) ≡ U ′(y, x) ∈ G.
It is easy to see that the parallel transport operation commutes with a gauge transformation

g(y)(U(y, x)fx) = U ′(y, x)f ′x (2)

and that the curvature tensor is invariant under the transformation

U1U2U
−1
3 U−1

4 = U ′1U ′2(U ′3)−1(U ′4)
−1. (3)

As we will see in the next section, this is a very important property for the modelling of financial
market dynamics.
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5. Gauge invariance

In this section we introduce a very important symmetry: namely, the gauge symmetry or
symmetry with respect to arbitrary gauge transformations, which will play a significant role
in model building.

Let us ask ourselves the following question: ‘If tomorrow we measure money not in
pounds but in pence and adjust prices accordingly, will the market dynamics be different?’.
Instead of pence one could use 10p but does it matter? If one starts to count shares in hundreds
of shares rather than in shares will it change the trading? If the answer to these questions is
‘no’ then the financial market obeys the symmetry with respect to a local change of asset units
or, in geometrical terms, with respect to gauge transformations.

Proposition 1. The symmetry of the financial dynamics with respect to arbitrary changes of
numbers for any asset at any moment of time constitutes the gauge symmetry in the fibre bundle
E constructed in theorem 1 with the connection defined in theorem 2.

There is no doubt that the real world has this property, at least to a certain extent: agents do
not start behaving in a different way only because they are dealing with 100p instead of pounds
or if there are two lots of 50 shares instead of one lot of 100 shares. This means that there
are no fundamental asset units. At first sight, the symmetry is not that powerful and is almost
trivial. However, this first impression is wrong. To start with, the symmetry group is actually
local and, hence, infinite-dimensional since the dilatations of the asset units are allowed for
any asset and, importantly, forany moment of time. Second, in building a theory to describe a
financial market dynamics one can only use mathematical objects that remain unaltered when
the units of measurement are changed: i.e., gauge invariant objects such as curvature tensor
and blocks of the covariant derivatives or covariant differences.

There is no perfect symmetry in nature. Gauge symmetry is not perfect either. Transaction
costs and bid–ask spread do violate the symmetry (see Loeb 1983). Furthermore, as has been
mentioned by many authors (see Famaet al1969, Grinblatt 1984, Bar-Yosefet al1977, Charest
1978, Conroyet al 1990, Copeland 1979), share splits are not perfect symmetry operations in
real life and generally do change the effective price. These imperfections exist and could form
the subject of a separate study. However, it is reasonable to start with the ideal problem and
introduce the market imperfections as a perturbation later.

6. Conclusion

In this paper we suggested a geometrical framework to describe financial markets. It is clear
that the picture can be generalized for any exchange economy system. Indeed, the only
important issues for the above constructions were the existence of exchangable assets and
rules of this exchange. As soon as the picture stays the same for any such system, the general
rules of model construction stay the same also. This may open up a possibility to overcome
equilibrium market model restrictions and help to develop, from first principles, dynamical
economic theories.

The gauge symmetry of financial markets itself is a very interesting property (see Young
(1999), Baket al (1999) for other discussions of financial symmetries with respect to changes
in numbers). But what is really exciting about the underlying geometrical picture is the
possibility to develop dynamical models of prices and money flows which are similar to well
known physical models. The reader can find more on the applications of gauge symmetry to
real markets in Ilinski (1997, 1998), Ilinski and Kalinin (1997), Ilinski and Stepanento (1998),
Ilinskaia and Ilinski (1998).
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In conclusion, we wish to add that this is not first time that abstract definitions of fibre
bundle geometry have appeared in the description of real life. Many important concepts
in physics can be interpreted in terms of the geometry of fibre bundles (Eguchi 1980).
Maxwell’s theory of electromagnetism and Yang–Mills’ theories are essentially theories of the
connections on principal bundles with a given gauge groupG as the fibre. Einstein’s theory
of gravitation deals with the Levi-Civita connection on the frame bundle of the space–time
manifold. Actually, the original Hermann Weyl gauge theory (Weyl 1919, Moriyasu 1983),
the oldest gauge theory, which he suggested to explain electromagnetism, was very close to
the theory we have begun to develop here. One hopes that by using gauge theory, economics
could eventually become a much more exact science, as happened for electrodynamics.
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